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Effect of Particle Size Distribution on Catalyst Effectiveness 

Calculations of catalyst effectiveness in 
heterogeneous catalysis are normally based 
on an average particle size. This approach 
is quite adequate for situations in which the 
catalyst particles are nearly uniform in size. 
In packed bed reactors, for example, the 
catalyst particles are usually tabletted, ex- 
truded, or formed in some other fairly con- 
sistent manner. On the other hand, there 
are cases in which a distribution of particle 
sizes must be considered. In fluidized bed 
catalytic cracking, the catalyst particles are 
typically distributed over a range of diame- 
ters from about 10 to 150 pm. Another ex- 
ample is catalyst microeffectiveness’ in 
pilled zeolite catalysts. Synthetic zeolite 
crystals are typically distributed over a 
range of particle sizes from about 1 to 10 
pm. Under such circumstances it is not 
clear how the average particle size should 
be calculated. Neither is it clear at what 
point the use of an average particle size be- 
comes unacceptable and the entire distribu- 
tion of sizes must be considered. These 
questions will be addressed in the present 
communication. 

We will consider the case of a first-order 
catalytic reaction in spherical particles, but 
before proceeding further it is important to 
distinguish between several different types 
of particle size distribution functions. Let 
f”(r) be the volume fraction particle size dis- 
tribution such that f,(r)dr is the volume 
fraction of particles with radii between r 

1 Pilled zeolites are “bidisperse structured,” and the 
overall catalyst effectiveness will generally depend 
upon the rates of diffusion within the interstices be- 
tween crystals (macroeffectiveness) as well as the dif- 
fusion rate within the crystals (microeffectiveness). 
See Ors and Dogu (I) for more details. 

and r + dr. The volume fraction distribu- 
tion is observed experimentally in particle 
size analyses by conductometric tech- 
niques (Coulter counter), for example. Pro- 
vided that the particle density does not vary 
with radius, the volume fraction distribu- 
tion is identical to the weight fraction distri- 
bution, fW(r), which is obtained in sedimen- 
tation measurements. Microscopic deter- 
minations yield a number fraction dis- 
tribution, f(r), such that f(r)dr is the num- 
ber fraction of particles with radii between r 
and r + dr. The two distributions, f(r) and 
f”(r), are related according to 

fv(r)dr = 

I 

2(4n’)f(r)dr 

o Eb-W?Wr 

or 

where 

.f&) = -=$ Ar), 

that is, 7 is the expectation of r”. 
It is convenient to define a mean value of 

the effectiveness factor, r),,,, applicable to a 
distribution of particle sizes according to 

-RAW,obs 
%I= -RAWS’ (3) 

where -&w,obs is the reaction rate ob- 
served for the distribution of particle sizes 
and -RAw,S is the rate that would be ob- 
tained in the limit of infinite intraparticle 
mass transfer, i.e., if the reactant concen- 
tration throughout all particles was uniform 
at CA& the particle surface concentration. 

470 

0021-9517/83/020470-05%03.00/0 
Copyright 0 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NOTES 471 

The observed reaction rate can also be ob- 
tained by integrating over the distribution 
of particle sizes, i.e., 

and since the particle density is assumed to 
be independent of particle size, 

-&w,obs = -RAW,S 
I 

r qfvtrW. (4) 

It is appropriate to employ the volume dis- 
tribution function fV(r) in this integration 
since ~/p,(-R~w,s) is the observed reaction 
rate per unit volume in particles of radius r. 
From Eqs. (3) and (4) it is immediately ap- 
parent that 

(5) 

We note that this result is quite general 
since no assumptions have been made re- 
garding reaction rate form or shape of the 
particle size distribution. 

For a first-order reaction in a sphere the 
kinetics expression on a catalyst weight ba- 
sis is 

-RAW = kCA (6) 

and the effectiveness factor is given by 

3 1 1 
q=h tanh(h)--h’ [ I (7) 

where h is the Thiele modulus, 

h=r J 
P& 
ip 

Note that the nonsubscripted h and r) are 
written for particles of a particular size, r. 

AVERAGE PARTICLE RADIUS 

A convenient definition of average parti- 
cle radius can be obtained by considering 
the asymptotic region of strong intraparti- 
cle diffusion resistance. For large h Eq. (7) 
is closely approximated by 

(9) 

Upon substituting from Eqs. (I), (8) and (9) 
into Eq. (5) we have 

3 
rim = 

7% 
J- 

I 
0’ r2f(r)dr. 

and with the aid of Eq. (2) 

3 

or 

77m =$ 
m 

where 

h, = rm J 
ppk 
DAM 

and 

Fi 
r, = - 

3 

WV 

11) 

12) 

is the average particle radius. Defining the 
average particle radius in this fashion en- 
sures that effectiveness factor plots (71, vs 
h,,,) will converge to the same asymptotic 
curve at large values of Thiele modulus for 
all particle size distributions. Aris recom- 
mended using a mean radius equivalent to 
rm on the basis of an argument similar to 
that employed here (2). Although Eq. (12) 
was obtained for a first-order reaction, it is 
easily shown from an analysis based on the 
generalized Thiele modulus (.?) that the 
result is valid for any reaction rate form. 

EFFECT OF PARTICLE SIZE DISTRIBUTION 

The use of a mean particle size is strictly 
valid only in the asymptotic limit of strong 
intraparticle diffusion resistance (or in the 
trivial case where 77 is unity in all particles). 
Outside the asymptotic region calculations 
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based on a mean particle size can only be 
approximate. In order to explore the magni- 
tude of this approximation, let us consider a 
case in which the volume fraction particle 
size distribution is log-normal with parame- 
ters (Y and p, i.e., 

1 
f”W = 2/1;; p 

1 
0 [ 

_ (In r - a)2 
; ev 1 2p2 ’ r > 0. (13) 

The log-normal distribution is very com- 
mon in nature. It arises when an event can 
be expressed as the product of independent 
causative factors, and under such circum- 
stances Eq. (13) can be derived by applica- 
tion of the Central Limit theorem of mathe- 
matical statistics (4). 

To express the mean radius, r,,,, in terms 
of the distribution parameters, (Y and p, we 
first write Eq. (2) for II = 2 and eliminate 
f(r) with the aid of Eq. (1) to obtain 

The integral in this expression can be evalu- 
ated after substituting from Eq. (13) for the 
distribution function. Upon combining 
these results with Eq. (12) we have 

a-0212 r,=e . (14) 

The mean effectiveness factor, nm, is ob- 
tained by substituting for f”(r) in Eq. (5). 
Thus 

r)m= 0 I I &j 
(In r - ~4)~ 

w2 
dr. (15) 

This expression is written in a more con- 
venient form by making the transformation 
of variables: 

Inr-cu 
z= flP’ 

(16) 

Equation (15) can then be written as 

7)m = & 

From a rearrangement of Eq. (16) we have 

r = en+tipz (18) 

The Thiele modulus is obtained by substi- 
tuting for r in Eq. (8), 

h = ea+tiPz J 
P& 
e 
DA 

or 

h = ,a-,3212 

and upon combining this result with Eqs. 
(14) and (11) we have 

h = h, e\/5pZ+P212 (19) 
Equations (19), (7), and (17) can be solved 
to obtain r), as a function of only two pa- 
rameters, h, and /3. The parameter (Y is con- 
tained in h,. 

The integral of Eq. (17) was evaluated 
using the Gauss-Hermite quadrature for- 
mula (5) for a range of parameter values and 
the results are plotted in Fig. 1. For values 
of /3 less than about 0.5 an average particle 
size can be employed in calculations of ef- 
fectiveness factor with little loss of accu- 
racy. The maximum error in this approxi- 
mation is only 9%. Errors as great as 32% 
can result from using an average particle 
size when p is unity. For values of p greater 
than unity it will be necessary to include the 
entire particle size distribution in calcula- 
tions of catalyst effectiveness. Note, how- 
ever, that values greater than unity will sel- 
dom be encountered in practice. 

The mean, CL, and variance, cr2, of the 
log-normal distribution are given by the (6) 

p = eU+P212, (20) 

u2 = p2(eP2 - 1). (21) 

Consequently, for given (I! the width of the 
distribution varies roughly in proportion to 
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FIG. 1. Effectiveness factor plot for a first-order reaction in spherical particles having a log-normal 
(volume fraction) size distribution. 0 = 0 corresponds to particles of uniform size. 

the exponential of p2. Care must therefore 
be exercised in interpreting p as a measure 
of distribution width. 

SUMMARY 

When calculating the effectiveness factor 
for a distribution of catalyst particle sizes, 
the average particle radius defined by Eq. 
(12) should be employed. Then, in the as- 
ymptotic limit of strong intraparticle diffu- 
sion resistance all plots of effectiveness fac- 
tor vs Thiele modulus, regardless of the 
shape of the particle size distribution, will 
be identical to the plot for a uniform parti- 
cle size. Outside the asymptotic limit one 
must take into account the distribution of 
particle sizes, Eq. (5), for precise calcula- 
tions. However, an analysis based upon the 
log-normal distribution indicates that the 
use of an average particle radius is quite 
reasonable for values of the parameter p 
less than about 0.5 (Fig. 1). If errors of the 
order of 32% can be tolerated, then calcula-’ 

tions based upon the average radius can be 
employed for values of /? less than unity. 

NOMENCLATURE 

CA = Reactant concentration, moYcm3 
DAe = Reactant effective diffusivity, 

cm2/s 
h = Thiele modulus for sphere 
k = First-order rate constant, cm3/g . s 
n = Exponent in Eq. (2) 
r = Particle radius, cm 

-R..,w = Reaction rate (disappearance), 
mol/g . s 

z = Variable defined by Eq. (16) 
(Y = Parameter in log-normai distribu- 

tion, Eq. (13) 
fl = Parameter in log-normal distribu- 

tion, Eq. (13) 
7) = Effectiveness factor 
p = Mean of log-normal distribution, 

Eq. (20), cm 
pp = Particle density, g/cm3 
u2 = Variance of log-normal distribu- 

tion, Eq. (21), cm2 



474 

Subscripts: 

NOTES 

4. Chow, V. T., Proc. Amer. Sot. Civil Engrs. 80,536 

A= 
m= 

obs = 
S= 

(1954). 
Reactant 5. Scheid, F., “Numerical Analysis,” Schaum’s Out- 
Mean or average value line Ser. in Math. McGraw-Hill, New York, 1968. 

Observed quantity 6. Miller, I., and Freund, J. E., “Probability and Sta- 

Quantity at external particle sur- tistics for Engineers,” 2nd ed. Prentice-Hall, 

face 
Englewood Cliffs, N.J., 1977. 

V= Volumetric basis 
W= Weight basis 
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